Gauss-Jordan Elimination

For example, let’s solve the following system of linear equations.

\[\begin{cases} x - 2y &= 2 \\ 5x + 2y &= 11 \end{cases}\]

We can rewrite this system in matrix form as follows.

\[\begin{bmatrix} 1 & -2 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}\]

This can be expressed more compactly using the augment matrix.

\[\begin{bmatrix} 1 & -2 & 2 \\ 5 & 2 & 11 \end{bmatrix}\]

This is called an augmented matrix.
When performing Gaussian elimination, we use the following elementary row operations.

  1. Multiply a row by a non-zero scalar.
  2. Swap two rows.
  3. Add a multiple of one row to another row.

Implementation of Gaussian Elimination

Step 1: Start with the augmented matrix corresponding to the system.

\[\begin{cases} x - 2y &= 2 \\ 5x + 2y &= 11 \end{cases} \ \rightarrow \ \begin{bmatrix} 1 & -2 & 2 \\ 5 & 2 & 11 \end{bmatrix}\]

Step 2: Multiply the first row by -5 to make the pivot for elimination easier when adding to the second row.

\[\begin{bmatrix} -5 & 10 & -10 \\ 5 & 2 & 11 \end{bmatrix}\]

Step 3: Add the second row to the modified first row (Row 1 + Row 2).
This gives a new first row of [0, 12, 1], while the second row remains unchanged.
The resulting matrix is

\[\begin{cases} -5x + &10y &= -10 \\ &12y &= 1 \end{cases} \ \rightarrow \ \begin{bmatrix} -5 & 10 & -10 \\ 0 & 12 & 1 \end{bmatrix}\]

Now, we can get solution in linear equation.

© 2026 Kar7mp5. Powered by jemdoc+MathJax style.