Vectors: Basic Operations

This blog is based on Jong-han Kim’s Linear Algebra

Block Vectors

\[\mathbf{a} = \begin{bmatrix} b \\ c \\ d \end{bmatrix}\]

Zero, ones, and unit vectors

  • n-vector 모든 값이 $0$ 이면, $0_n$, $0$라 표현한다.
  • n-vector 모든 값이 $1$ 이면, $\mathbf{1}_n$, $\mathbf{1}$라 표현한다.
  • unit vector 는 하나의 값이 $1$, 나머지는 $0$으로 채워짐.

e.g., 길이가 $3$인 단위벡터

\[\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\]

Sparsity

벡터에 $0$으로 채워진 경우가 많다. 이를 효율적으로 계산할 수 있음.
$\mathbf{mnz}(x)$: non-zero인 값의 수

e.g., zero vector, unit vector


Properties of vector addition

  • commutative: $a + b = b + a$
  • associative: $(a + b) + c = a + (b + c)$

Scaler-vector multiplication

scalar $\beta$, n-vector $\mathbf{a}$

\[\beta \mathbf{a} = (\beta \mathbf{a}_1, \dots, \beta \mathbf{a}_n)\]

e.g.,

\[(-2) \begin{bmatrix} 1 \\ 9 \\ 6 \end{bmatrix} = \begin{bmatrix} -2 \\ -18 \\ -12 \end{bmatrix}\]

Properties of scalar-vector multiplication

  • associative: $(\beta \gamma)\mathbf{a} = \beta(\gamma \mathbf{a})$
  • left distributive: $(\beta + \gamma) \mathbf{a} = \beta\mathbf{a} + \gamma\mathbf{a}$
  • right distributive: $\beta(\mathbf{a} + \mathbf{b}) = \beta\mathbf{a} + \beta\mathbf{b}$

Linear combinations

vectors $\mathbf{a}_1, \dots, \mathbf{a}_m$, scalars $\beta_1, \dots,\beta_m$ 의 linear combination은 $\beta_1\mathbf{a}_1 + \dots + \beta_m\mathbf{a}_m$ 이다.

e.g., for any n-vector $\mathbf{b}$

\[\mathbf{b} = \mathbf{b}_1\mathbf{e}_1 + \dots + \mathbf{b}_n\mathbf{e}_n\]

Linear product

Inner product (or dot product) of n-vectors $\mathbf{a}$ and $\mathbf{b}$ is

\[\mathbf{a}^T\mathbf{b} = \mathbf{a}_1\mathbf{b}_1 + \dots + \mathbf{a}_n\mathbf{b}_n\]

다른 notation: $<a, b>,\ <a \vert b>,\ (a, b),\ a \cdot b$

e.g.,

\[\begin{bmatrix} -1 \\2 \\2 \end{bmatrix}^T \begin{bmatrix} 1 \\0 \\-3 \end{bmatrix} = (-1)(1) + (2)(0) + (2)(-3) = -7\]

Properties of inner product

  • $\mathbf{a}^T\mathbf{b} = \mathbf{b}^T\mathbf{a}$
  • $(\gamma\mathbf{a})^T\mathbf{b} = \gamma(\mathbf{a}^T\mathbf{b})$
  • $(\mathbf{a}+\mathbf{b})^T\mathbf{c} = \mathbf{a}^T\mathbf{c}+\mathbf{b}^T\mathbf{c}$

e.g.,

\[(\mathbf{a}+\mathbf{b})^T (\mathbf{c}+\mathbf{d}) = \mathbf{a}^T\mathbf{c}+\mathbf{a}^T\mathbf{d}+\mathbf{b}^T\mathbf{c}+\mathbf{b}^T\mathbf{d}\]

중요 예시

행렬에서 자주 사용하는 수식이다.

\[\mathbf{e}^T_i\mathbf{a} = \mathbf{a}_i \quad \text{(picks out ith entry)}\] \[\mathbf{1}^T\mathbf{a} = \mathbf{a}_1 + \dots + \mathbf{a}_n \quad \text{(sum of entries)}\] \[\mathbf{a}^T\mathbf{a} = \mathbf{a}^2_i + \dots + \mathbf{a}^2_n \quad \text{(sum of squares of enties)}\]